Water delivery by pebble accretion to rocky planets in habitable zones in evolving disks

Author:

Ida Shigeru,Yamamura Takeru,Okuzumi Satoshi

Abstract

Context. The ocean mass of the Earth is only 2.3 × 10−4 of the whole planet mass. Even including water in the interior, the water fraction would be at most 10−3−10−2. Ancient Mars may have had a similar or slightly smaller water fraction. What controlled the amount of water in these planets has not been clear, although several models have been proposed. It is important to clarify the control mechanism to discuss water delivery to rocky planets in habitable zones in exoplanetary systems, as well as that to Earth and Mars in our solar system. Aims. We consider water delivery to planets by icy pebbles after the snowline inwardly passes planetary orbits. We derive the water mass fraction (fwater) of the final planet as a function of disk parameters and discuss the parameters that reproduce a small value of fwater comparable to that inferred for the Earth and ancient Mars. Methods. We calculated the growth of icy dust grains to pebbles and the pebble radial drift with a 1D model, by simultaneously solving the snowline migration and dissipation of a gas disk. With the obtained pebble mass flux, we calculated accretion of icy pebbles onto planets after the snowline passage to evaluate fwater of the planets. Results. We find that fwater is regulated by the total mass (Mres) of icy dust materials preserved in the outer disk regions at the timing (t = tsnow) of the snowline passage of the planetary orbit. Because Mres decays rapidly after the pebble formation front reaches the disk outer edge (at t = tpff), fwater is sensitive to the ratio tsnowtpff, which is determined by the disk parameters. We find tsnowtpff < 10 or > 10 is important. By evaluating Mres analytically, we derive an analytical formula of fwater that reproduces the numerical results. Conclusions. Using the analytical formula, we find that fwater of a rocky planet near 1 au is similar to the Earth, i.e., ~10−4−10−2, in disks with an initial disk size of 30–50 au and an initial disk mass accretion rate of ~(10−8−10−7) M yr−1 for disk depletion timescale of approximately a few M yr. Because these disks may be median or slightly compact/massive disks, our results suggest that the water fraction of rocky planets in habitable zones may often be similar to that of the Earth if icy pebble accretion is responsible for water delivery.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3