Be and O in the ultra metal-poor dwarf 2MASS J18082002-5104378: the Be–O correlation

Author:

Spite M.,Bonifacio P.,Spite F.,Caffau E.,Sbordone L.,Gallagher A. J.

Abstract

Context. Measurable amounts of Be could have been synthesised primordially if the Universe were non-homogeneous or in the presence of late decaying relic particles. Aims. We investigate the Be abundance in the extremely metal-poor star 2MASS J1808-5104 ([Fe/H] = −3.84) with the aim of constraining inhomogeneities or the presence of late decaying particles. Methods. High resolution, high signal-to-noise ratio (S/N) UV spectra were acquired at ESO with the Kueyen 8.2 m telescope and the UVES spectrograph. Abundances were derived using several model atmospheres and spectral synthesis code. Results. We measured log(Be/H) = −14.3 from a spectrum synthesis of the region of the Be line. Using a conservative approach, however we adopted an upper limit two times higher, i.e. log(Be/H) < −14.0. We measured the O abundance from UV–OH lines and find [O/H] = −3.46 after a 3D correction. Conclusions. Our observation reinforces the existing upper limit on primordial Be. There is no observational indication for a primordial production of 9Be. This places strong constraints on the properties of putative relic particles. This result also supports the hypothesis of a homogeneous Universe, at the time of nucleosynthesis. Surprisingly, our upper limit of the Be abundance is well below the Be measurements in stars of similar [O/H]. This may be evidence that the Be–O relation breaks down in the early Galaxy, perhaps due to the escape of spallation products from the gas clouds in which stars such as 2MASS J1808-5104 have formed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implications of the non-observation of 6Li in halo stars for the primordial 7Li problem;Journal of Cosmology and Astroparticle Physics;2022-10-01

2. The CUBES science case;Experimental Astronomy;2022-10-01

3. The chemical abundance pattern of the extremely metal-poor thin disc star 2MASS J1808−5104 and its origins;Monthly Notices of the Royal Astronomical Society;2022-09-30

4. Metal poor stars;Experimental Astronomy;2022-06-08

5. Detecting weak beryllium lines with CUBES;Experimental Astronomy;2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3