Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER

Author:

Koumpia E.,Ababakr K. M.,de Wit W. J.,Oudmaijer R. D.,Caratti o Garatti A.,Boley P.,Linz H.,Kraus S.,Vink J. S.,Le Bouquin J.-B.

Abstract

Context. Binarity and multiplicity appear to be a common outcome in star formation. In particular, the binary fraction of massive (OB-type) stars can be very high. In many cases, the further stellar evolution of these stars is affected by binary interactions at some stage during their lifetime. The origin of this high binarity and the binary parameters are poorly understood because observational constraints are scarce, which is predominantly due to a dearth of known young massive binary systems. Aims. We aim to identify and describe massive young binary systems in order to fill in the gaps of our knowledge of primordial binarity of massive stars, which is crucial for our understanding of massive star formation. Methods. We observed the two massive young stellar objects (MYSOs) PDS 27 and PDS 37 at the highest spatial resolution provided by VLTI/PIONIER in the H-band (1.3 mas). We applied geometrical models to fit the observed squared visibilities and closure phases. In addition, we performed a radial velocity analysis using published VLT/FORS2 spectropolarimetric and VLT/X-shooter spectroscopic observations. Results. Our findings suggest binary companions for both objects at 12 mas (30 au) for PDS 27 and at 22–28 mas (42–54 au) for PDS 37. This means that they are among the closest MYSO binaries resolved to date. Conclusions. Our data spatially resolve PDS 27 and PDS 37 for the first time, revealing two of the closest and most massive (>8 M) YSO binary candidates to date. PDS 27 and PDS 37 are rare but great laboratories to quantitatively inform and test the theories on formation of such systems.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3