Abstract
Aims. Large compact polycyclic aromatic hydrocarbon molecules (PAHs) present special interest in the astrochemical community. A key issue in analyses of large PAHs is understanding the effect that temperature and anharmonicity have on different vibrational bands, and thus interpreting the infrared (IR) spectra for molecules under various conditions.
Methods. Because of the huge amount of interactions/resonances in large PAHs, no anharmonic IR spectrum can be produced with static/time-independent ab initio method, especially for the molecules with D6h symmetry, e.g., coronene and circumcoronene. In this work, we performed molecular dynamics simulations to generate anharmonic IR spectra of coronene and circumcoronene.
Results. The method is validated for small PAHs, i.e., naphthalene and pyrene. We find that the semiempirical method PM3 produces accurate band positions with an error <5 cm−1. Furthermore, we calculate the spectra at multiple temperatures and find a clear trend toward band shifting and broadening.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献