A massive nebula around the luminous blue variable star RMC 143 revealed by ALMA

Author:

Agliozzo C.ORCID,Mehner A.ORCID,Phillips N. M.,Leto P.,Groh J. H.,Noriega-Crespo A.ORCID,Buemi C.,Cavallaro F.,Cerrigone L.ORCID,Ingallinera A.ORCID,Paladini R.,Pignata G.,Trigilio C.ORCID,Umana G.

Abstract

The luminous blue variable (LBV) RMC 143 is located in the outskirts of the 30 Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC 143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. Both the extinction map and the SED are consistent with a dusty massive nebula with a dust mass of 0.055 ± 0.018 M (assuming κ850 = 1.7 cm2 g−1). To date, RMC 143 has the most dusty LBV nebula observed in the Magellanic Clouds. We have also re-examined the LBV classification of RMC 143 based on VLT/X-shooter spectra obtained in 2015/16 and a review of the publication record. The radiative transfer code CMFGEN is used to derive its fundamental stellar parameters. We find an effective temperature of ∼8500 K, luminosity of log(L/L) = 5.32, and a relatively high mass-loss rate of 1.0 × 10−5M yr−1. The luminosity is much lower than previously thought, which implies that the current stellar mass of ∼8 M is comparable to its nebular mass of ∼5.5 M (from an assumed gas-to-dust ratio of 100), suggesting that the star has lost a large fraction of its initial mass in past LBV eruptions or binary interactions. While the star may have been hotter in the past, it is currently not hot enough to ionize its circumstellar nebula. We propose that the nebula is ionized externally by the hot stars in the 30 Doradus star-forming region.

Funder

FONDECYT

Ministry of Economy, Development, and Tourism’s Millennium Science Initiative

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3