The Most Massive galaxy Clusters (M2C) across cosmic time: link between radial total mass distribution and dynamical state

Author:

Bartalucci I.,Arnaud M.,Pratt G. W.,Démoclès J.,Lovisari L.

Abstract

We study the dynamical state and the integrated total mass profiles of 75 massive (M500 > 5 × 1014 M) Sunyaev–Zeldovich(SZ)-selected clusters at 0.08 <  z <  1.1. The sample is built from the Planck catalogue, with the addition of four SPT clusters at z >  0.9. Using XMM-Newton imaging observations, we characterise the dynamical state with the centroid shift ⟨w⟩, the concentration CSB, and their combination, M, which simultaneously probes the core and the large-scale gas morphology. Using spatially resolved spectroscopy and assuming hydrostatic equilibrium, we derive the total integrated mass profiles. The mass profile shape is quantified by the sparsity, that is the ratio of M500 to M2500, the masses at density contrasts of 500 and 2500, respectively. We study the correlations between the various parameters and their dependence on redshift. We confirm that SZ-selected samples, thought to most accurately reflect the underlying cluster population, are dominated by disturbed and non-cool core objects at all redshifts. There is no significant evolution or mass dependence of either the cool core fraction or the centroid shift parameter. The M parameter evolves slightly with z, having a correlation coefficient of ρ = −0.2 ± 0.1 and a null hypothesis p-value of 0.01. In the high-mass regime considered here, the sparsity evolves minimally with redshift, increasing by 10% between z <  0.2 and z >  0.55, an effect that is significant at less than 2σ. In contrast, the dependence of the sparsity on dynamical state is much stronger, increasing by a factor of ∼60% from the one third most relaxed to the one third most disturbed objects, an effect that is significant at more than 3σ. This is the first observational evidence that the shape of the integrated total mass profile in massive clusters is principally governed by the dynamical state and is only mildly dependent on redshift. We discuss the consequences for the comparison between observations and theoretical predictions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3