ExPRES: an Exoplanetary and Planetary Radio Emissions Simulator

Author:

Louis C. K.ORCID,Hess S. L. G.ORCID,Cecconi B.ORCID,Zarka P.ORCID,Lamy L.ORCID,Aicardi S.ORCID,Loh A.

Abstract

Context. Earth and outer planets are known to produce intense non-thermal radio emissions through a mechanism known as cyclotron maser instability (CMI), requiring the presence of accelerated electrons generally arising from magnetospheric current systems. In return, radio emissions are a good probe of these current systems and acceleration processes. The CMI generates highly anisotropic emissions and leads to important visibility effects, which have to be taken into account when interpreting the data. Several studies have shown that modelling the radio source anisotropic beaming pattern can reveal a wealth of physical information about the planetary or exoplanetary magnetospheres that produce these emissions. Aims. We present a numerical tool, called ExPRES (Exoplanetary and Planetary Radio Emission Simulator), which is able to reproduce the occurrence in a time-frequency plane of RX CMI-generated radio emissions from planetary magnetospheres, exoplanets, or star–planet interacting systems. Special attention is given to the computation of the radio emission beaming at and near its source. Methods. We explain what physical information about the system can be drawn from such radio observations, and how it is obtained. This information may include the location and dynamics of the radio sources, the type of current system leading to electron acceleration and their energy, and, for exoplanetary systems, the orbital period of the emitting body and the strength, rotation period, tilt, and the offset of the planetary magnetic field. Most of these parameters can only be remotely measured via radio observations. Results. The ExPRES code provides the proper framework of analysis and interpretation for past, current, and future observations of planetary radio emissions, as well as for future detection of radio emissions from exoplanetary systems (or magnetic, white dwarf–planet or white dwarf–brown dwarf systems). Our methodology can be easily adapted to simulate specific observations once effective detection is achieved.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3