The complex chemistry of hot cores in Sgr B2(N): influence of cosmic-ray ionization and thermal history

Author:

Bonfand M.,Belloche A.,Garrod R. T.,Menten K. M.,Willis E.,Stéphan G.,Müller H. S. P.

Abstract

Context. As the number of complex organic molecules (COMs) detected in the interstellar medium increases, it becomes even more important to place meaningful constraints on the origins and formation pathways of such chemical species. The molecular cloud Sagittarius B2(N) is host to several hot molecular cores in the early stage of star formation, where a great variety of COMs are detected in the gas phase. Given its exposure to the extreme conditions of the Galactic center (GC) region, Sgr B2(N) is one of the best targets to study the impact of environmental conditions on the production of COMs. Aims. Our main goal is to characterize the physico-chemical evolution of Sgr B2(N)’s sources in order to explain their chemical differences and constrain their environmental conditions. Methods. The chemical composition of Sgr B2(N)’s hot cores, N2, N3, N4, and N5 is derived by modeling their 3 mm emission spectra extracted from the Exploring Molecular Complexity with ALMA (EMoCA) imaging spectral line survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA). We derived the density distribution in the envelope of the sources based on the masses computed from the ALMA dust continuum emission maps. We used the radiative transfer code RADMC-3D to compute temperature profiles and inferred the current luminosity of the sources based on the COM rotational temperatures derived from population diagrams. We used published results of 3D radiation-magnetohydrodynamical (RMHD) simulations of high-mass star formation to estimate the time evolution of the source properties. We employed the astrochemical code MAGICKAL to compute time-dependent chemical abundances in the sources and to investigate how physical properties and environmental conditions influence the production of COMs. Results. The analysis of the abundances of 11 COMs detected toward Sgr B2(N2-N5) reveals that N3 and N5 share a similar chemical composition while N2 differs significantly from the other sources. We estimate the current luminosities of N2, N3, N4, and N5 to be 2.6 × 105 L, 4.5 × 104 L, 3.9 × 105 L, and 2.8 × 105 L, respectively. We find that astrochemical models with a cosmic-ray ionization rate of 7 × 10−16 s−1 best reproduce the abundances with respect to methanol of ten COMs observed toward Sgr B2(N2-N5). We also show that COMs still form efficiently on dust grains with minimum dust temperatures in the prestellar phase as high as 15 K, but that minimum temperatures higher than 25 K are excluded. Conclusions. The chemical evolution of Sgr B2(N2-N5) strongly depends on their physical history. A more realistic description of the hot cores’ physical evolution requires a more rigorous treatment with RMHD simulations tailored to each hot core.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3