Faint solar analogues at the limit of no reddening

Author:

Giribaldi R. E.ORCID,Porto de Mello G. F.,Lorenzo-Oliveira D.,Amôres E. B.,Ubaldo-Melo M. L.

Abstract

Context. The flux distribution of solar analogues is required for calculating the spectral albedo of solar system bodies such as asteroids and trans-Neptunian objects. Ideally a solar analogue should be comparatively faint as the target of interest, but very few analogues fainter than V = 9 mag have been identified so far. Only atmospheric parameters equal to solar guarantee a flux distribution equal to solar as well, while only photometric colours equal to solar do not. Reddening is also a factor to consider when selecting faint analogue candidates. Aims. Our aim is to implement the methodology for identifying faint analogues at the limit of precision allowed by the current spectroscopic surveys. We quantify the precision attainable for the atmospheric parameters of effective temperature (Teff), metallicity ([Fe/H]), and surface gravity (log g) when derived from moderately low-resolution (R = 8000) spectra with SN ~ 100. We estimate the significance of reddening at 100–300 pc from the Sun. Methods. We used the less precise photometry in the HIPPARCOS catalogue to select potential analogues with V ~ 10.5 mag (located at ~135 pc). We calibrated Teff and [Fe/H] as functions of equivalent widths of spectral indices by means of the principal component analysis regression. We derived log g, mass, radius, and age from the atmospheric parameters, Gaia parallaxes, and evolutionary tracks. We evaluated the presence of reddening for the candidates by underestimations of photometric Teff with respect to those derived by spectral indices. These determinations were validated with extinction maps. Results. We obtained the atmospheric parameters Teff, [Fe/H], and log g with precision of 97 K, 0.06 dex, 0.05 dex, respectively. From 21 candidates analysed, we identify five solar analogues: HIP 991, HIP 5811, and HIP 69477 have solar parameters within 1σ errors, and HIP 55619 and HIP 61835 within 2σ errors. Six other stars have Teff close to solar, but slightly lower [Fe/H]. Our analogues show no evidence of reddening except for four stars, that present E(BV) ≥ 0.06 mag, translating to at least a 200 K decrease in photometric Teff.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TITANS metal-poor reference stars;Astronomy & Astrophysics;2023-11

2. Gaia Data Release 3: A golden sample of astrophysical parameters;Astronomy & Astrophysics;2022-07-05

3. Searching for new solar twins: The Inti survey for the Northern Sky;Monthly Notices of the Royal Astronomical Society;2021-04-10

4. HADES RV programme with HARPS-N at TNG;Astronomy & Astrophysics;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3