Sensitivity of Type Ia supernovae to electron capture rates

Author:

Bravo E.ORCID

Abstract

The thermonuclear explosion of massive white dwarfs is believed to explain at least a fraction of Type Ia supernovae (SNIa). After thermal runaway, electron captures on the ashes left behind by the burning front determine a loss of pressure, which impacts the dynamics of the explosion and the neutron excess of matter. Indeed, overproduction of neutron-rich species such as 54Cr has been deemed a problem of Chandrasekhar-mass models of SNIa for a long time. I present the results of a sensitivity study of SNIa models to the rates of weak interactions, which have been incorporated directly into the hydrodynamic explosion code. The weak rates have been scaled up or down by a factor ten, either globally for a common bibliographical source, or individually for selected isotopes. In line with previous works, the impact of weak rates uncertainties on sub-Chandrasekhar models of SNIa is almost negligible. The impact on the dynamics of Chandrasekhar-mass models and on the yield of 56Ni is also scarce. The strongest effect is found on the nucleosynthesis of neutron-rich nuclei, such as 48Ca, 54Cr, 58Fe, and 64Ni. The species with the highest influence on nucleosynthesis do not coincide with the isotopes that contribute most to the neutronization of matter. Among the latter, there are protons, 54, 55Fe, 55Co, and 56Ni, while the main influencers are 54, 55Mn and 55 − 57Fe, in disagreement with Parikh et al (2013, A&A, 557, A3), who found that SNIa nucleosynthesis is most sensitive to the β+-decay rates of 28Si, 32S, and 36Ar. An increase in all weak rates on pf-shell nuclei would affect the dynamical evolution of burning bubbles at the beginning of the explosion and the yields of SNIa.

Funder

MINECO-FEDER

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Exploring Nuclear Physics Sensitivity in Numerical Simulations;Journal of Physics: Conference Series;2024-04-01

2. Type Ia Supernova Nucleosynthesis: Metallicity-dependent Yields;The Astrophysical Journal Supplement Series;2023-08-22

3. Nucleosynthesis and Tracer Methods in Type Ia Supernovae;Handbook of Nuclear Physics;2023

4. Thermonuclear and electron-capture supernovae from stripped-envelope stars;Astronomy & Astrophysics;2022-12

5. Nucleosynthesis and Tracer Methods in Type Ia Supernovae;Handbook of Nuclear Physics;2022-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3