Quasars as standard candles II

Author:

Salvestrini F.ORCID,Risaliti G.,Bisogni S.ORCID,Lusso E.ORCID,Vignali C.ORCID

Abstract

A tight non-linear relation between the X-ray and the optical-ultraviolet (UV) emission has been observed in active galactic nuclei (AGN) over a wide range of redshift and several orders of magnitude in luminosity, suggesting the existence of an ubiquitous physical mechanism regulating the energy transfer between the accretion disc and the X-ray emitting corona. Recently, our group developed a method to use this relation in observational cosmology, turning quasars into standardizable candles. This work mainly seeks to investigate the potential evolution of this correction at high redshifts. We thus studied the LX − LUV relation for a sample of quasars in the redshift range 4 <  z <  7, adopting the selection criteria proposed in our previous work regarding their spectral properties. The resulting sample consists of 53 type 1 (unobscured) quasars, observed either with Chandra or XMM-Newton, for which we performed a full spectral analysis, determining the rest-frame 2 keV flux density, as well as more general X-ray properties such as the estimate of photon index, and the soft (0.5–2 keV) and hard (2–10 keV) unabsorbed luminosities. We find that the relation shows no evidence for evolution with redshift. The intrinsic dispersion of the LXLUV for a sample free of systematics/contaminants is of the order of 0.22 dex, which is consistent with previous estimates from our group on quasars at lower redshift.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3