Dusty disk winds at the sublimation rim of the highly inclined, low mass young stellar object SU Aurigae

Author:

Labdon AaronORCID,Kraus Stefan,Davies Claire L.,Kreplin Alexander,Kluska Jacques,Harries Tim J.,Monnier John D.,ten Brummelaar Theo,Baron Fabien,Millan-Gabet Rafael,Kloppenborg Brian,Eisner Joshua,Sturmann Judit,Sturmann Laszlo

Abstract

Context. T Tauri stars are low-mass young stars whose disks provide the setting for planet formation. Despite this, their structure is poorly understood. We present new infrared interferometric observations of the SU Aurigae circumstellar environment that offer resolution that is three times higher and a better baseline position angle coverage than previous observations. Aims. We aim to investigate the characteristics of the circumstellar material around SU Aur, constrain the disk geometry, composition and inner dust rim structure. Methods. The CHARA array offers unique opportunities for long baseline observations, with baselines up to 331 m. Using the CLIMB three-telescope combiner in the K-band allows us to measure visibilities as well as closure phase. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrain the physical parameters of the disk. For the first time, a dusty disk wind is introduced to the radiative transfer code TORUS to model protoplanetary disks. Our implementation is motivated by theoretical models of dusty disk winds, where magnetic field lines drive dust above the disk plane close to the sublimation zone. Results. Image reconstruction reveals an inclined disk with slight asymmetry along its minor-axis, likely due to inclination effects obscuring the inner disk rim through absorption of incident star light on the near-side and thermal re-emission and scattering of the far-side. Geometric modelling of a skewed ring finds the inner rim at 0.17 ± 0.02 au with an inclination of 50.9 ± 1.0° and minor axis position angle 60.8 ± 1.2°. Radiative transfer modelling shows a flared disk with an inner radius at 0.18 au which implies a grain size of 0.4 μm assuming astronomical silicates and a scale height of 15.0 at 100 au. Among the tested radiative transfer models, only the dusty disk wind successfully accounts for the K-band excess by introducing dust above the mid-plane.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3