J-PLUS: Tools to identify compact planetary nebulae in the Javalambre and southern photometric local Universe surveys

Author:

Gutiérrez-Soto L. A.,Gonçalves D. R.,Akras S.,Cortesi A.,López-Sanjuan C.,Guerrero M. A.,Daflon S.,Borges Fernandes M.,Mendes de Oliveira C.,Ederoclite A.,Sodré L.,Pereira C. B.,Kanaan A.,Werle A.,Vázquez Ramió H.,Alcaniz J. S.,Angulo R. E.,Cenarro A. J.,Cristóbal-Hornillos D.,Dupke R. A.,Hernández-Monteagudo C.,Marín-Franch A.,Moles M.,Varela J.,Ribeiro T.,Schoenell W.,Alvarez-Candal A.,Galbany L.,Jiménez-Esteban F. M.,Logroño-García R.,Sobral D.

Abstract

Context. From the approximately 3500 planetary nebulae (PNe) discovered in our Galaxy, only 14 are known to be members of the Galactic halo. Nevertheless, a systematic search for halo PNe has never been performed. Aims. In this study, we present new photometric diagnostic tools to identify compact PNe in the Galactic halo by making use of the novel 12-filter system projects, Javalambre Photometric Local Universe Survey (J-PLUS) and Southern-Photometric Local Universe Survey (S-PLUS). Methods. We reconstructed the Isaac Newton Telescope Photometric Hα Survey of the Northern Galactic Plane diagnostic diagram and propose four new ones using (i) the J-PLUS and S-PLUS synthetic photometry for a grid of photo-ionisation models of halo PNe, (ii) several observed halo PNe, as well as (iii) a number of other emission-line objects that resemble PNe. All colour–colour diagnostic diagrams are validated using two known halo PNe observed by J-PLUS during the scientific verification phase and the first data release (DR1) of S-PLUS and the DR1 of J-PLUS. Results. By applying our criteria to the DR1s (~1190 deg2), we identified one PN candidate. However, optical follow-up spectroscopy proved it to be a H II region belonging to the UGC 5272 galaxy. Here, we also discuss the PN and two H II galaxies recovered by these selection criteria. Finally, the cross-matching with the most updated PNe catalogue (HASH) helped us to highlight the potential of these surveys, since we recover all the known PNe in the observed area. Conclusions. The tools here proposed to identify PNe and separate them from their emission-line contaminants proved to be very efficient thanks to the combination of many colours, even when applied – like in the present work – to an automatic photometric search that is limited to compact PNe.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3