H.E.S.S. and Suzaku observations of the Vela X pulsar wind nebula

Author:

,Abdalla H.,Aharonian F.,Ait Benkhali F.,Angüner E. O.,Arakawa M.,Arcaro C.,Armand C.,Backes M.,Barnard M.,Becherini Y.,Berge D.,Bernlöhr K.,Blackwell R.,Böttcher M.,Boisson C.,Bolmont J.,Bonnefoy S.,Bregeon J.,Brun F.,Brun P.,Bryan M.,Büchele M.,Bulik T.,Bylund T.,Capasso M.,Caroff S.,Carosi A.,Casanova S.,Cerruti M.,Chakraborty N.,Chand T.,Chandra S.,Chaves R. C. G.,Chen A.,Colafrancesco S.,Condon B.,Davids I. D.,Deil C.,Devin J.,deWilt P.,Dirson L.,Djannati-Ataï A.,Dmytriiev A.,Donath A.,Doroshenko V.,Drury L. O’C.,Dyks J.,Egberts K.,Emery G.,Ernenwein J.-P.,Eschbach S.,Feijen K.,Fegan S.,Fiasson A.,Fontaine G.,Funk S.,Füßling M.,Gabici S.,Gallant Y. A.,Gaté F.,Giavitto G.,Glawion D.,Glicenstein J. F.,Gottschall D.,Grondin M.-H.,Hahn J.,Haupt M.,Heinzelmann G.,Henri G.,Hermann G.,Hinton J. A.,Hofmann W.,Hoischen C.,Holch T. L.,Holler M.,Horns D.,Huber D.,Iwasaki H.,Jacholkowska A.,Jamrozy M.,Jankowsky D.,Jankowsky F.,Jouvin L.,Jung-Richardt I.,Kastendieck M. A.,Katarzyński K.,Katsuragawa M.,Katz U.,Khangulyan D.,Khélifi B.,King J.,Klepser S.,Kluźniak W.,Komin Nu.,Kosack K.,Kostunin D.,Kraus M.,Lamanna G.,Lau J.,Lemière A.,Lemoine-Goumard M.,Lenain J.-P.,Leser E.,Lohse T.,López-Coto R.,Lypova I.,Malyshev D.,Marandon V.,Marcowith A.,Mariaud C.,Martí-Devesa G.,Marx R.,Maurin G.,Maxted N. I.,Meintjes P. J.,Mitchell A. M. W.,Moderski R.,Mohamed M.,Mohrmann L.,Moore C.,Moulin E.,Murach T.,Nakashima S.,de Naurois M.,Ndiyavala H.,Niederwanger F.,Niemiec J.,Oakes L.,O’Brien P.,Odaka H.,Ohm S.,de Ona Wilhelmi E.,Ostrowski M.,Oya I.,Panter M.,Parsons R. D.,Perennes C.,Petrucci P.-O.,Peyaud B.,Piel Q.,Pita S.,Poireau V.,Priyana Noel A.,Prokhorov D. A.,Prokoph H.,Pühlhofer G.,Punch M.,Quirrenbach A.,Raab S.,Rauth R.,Reimer A.,Reimer O.,Renaud M.,Rieger F.,Rinchiuso L.,Romoli C.,Rowell G.,Rudak B.,Ruiz-Velasco E.,Sahakian V.,Saito S.,Sanchez D. A.,Santangelo A.,Sasaki M.,Schlickeiser R.,Schüssler F.,Schulz A.,Schutte H.,Schwanke U.,Schwemmer S.,Seglar-Arroyo M.,Senniappan M.,Seyffert A. S.,Shafi N.,Shilon I.,Shiningayamwe K.,Simoni R.,Sinha A.,Sol H.,Specovius A.,Spir-Jacob M.,Stawarz Ł.,Steenkamp R.,Stegmann C.,Steppa C.,Takahashi T.,Tavernet J.-P.,Tavernier T.,Taylor A. M.,Terrier R.,Tibaldo L.ORCID,Tiziani D.,Tluczykont M.,Trichard C.,Tsirou M.,Tsuji N.,Tuffs R.,Uchiyama Y.,van der Walt D. J.,van Eldik C.,van Rensburg C.,van Soelen B.,Vasileiadis G.,Veh J.,Venter C.,Vincent P.,Vink J.,Voisin F.,Völk H. J.,Vuillaume T.,Wadiasingh Z.,Wagner S. J.,White R.,Wierzcholska A.,Yang R.,Yoneda H.,Zaborov D.,Zacharias M.,Zanin R.,Zdziarski A. A.,Zech A.,Ziegler A.,Zorn J.,Żywucka N.

Abstract

Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10−12 erg cm−3. The data indicate the presence of a cutoff in the electron spectrum at energies of ~ 100 TeV and a magnetic field strength of ~6 μG. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range ≳ 10 keV.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. H.E.S.S.: The High Energy Stereoscopic System;Handbook of X-ray and Gamma-ray Astrophysics;2024

2. Introduction to Ground-Based Gamma-Ray Astrophysics;Handbook of X-ray and Gamma-ray Astrophysics;2024

3. Pulsar Wind Nebulae;Handbook of X-ray and Gamma-ray Astrophysics;2024

4. Conclusions and Future Prospects;Springer Theses;2024

5. Data Analysis;Springer Theses;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3