Spatially resolved carbon and oxygen isotopic ratios in NGC 253 using optically thin tracers

Author:

Martín S.ORCID,Muller S.ORCID,Henkel C.,Meier D. S.,Aladro R.,Sakamoto K.,van der Werf P. P.ORCID

Abstract

Context. One of the most important aspects of modern astrophysics is related to our understanding of the origin of elements and chemical evolution in the large variety of astronomical sources. Nuclear regions of galaxies undergo heavy processing of matter, and are therefore ideal targets to investigate matter cycles via determination of elemental and isotopic abundances. Aims. To trace chemical evolution in a prototypical starburst environment, we spatially resolve carbon and oxygen isotope ratios across the central molecular zone (CMZ; full size ∼600 pc) in the nearby starburst galaxy NGC 253. Methods. We imaged the emission of the optically thin isotopologues 13CO, C18O, C17O, 13C18O at a spatial resolution ∼50 pc, comparable to the typical size of giant molecular associations. Optical depth effects and contamination of 13C18O by C4H are discussed and accounted for to derive column densities. Results. This is the first extragalactic detection of the double isotopologue 13C18O. Derived isotopic ratios 12C/13C ∼ 21 ± 6, 16O/18O ∼ 130 ± 40, and 18O/17O ∼ 4.5 ± 0.8 differ from the generally adopted values in the nuclei of galaxies. Conclusions. The molecular clouds in the central region of NGC 253 show similar rare isotope enrichment to those within the CMZ of the Milky way. This enrichment is attributed to stellar nucleosynthesis. Measured isotopic ratios suggest an enhancement of 18O as compared to our Galactic centre, which we attribute to an extra 18O injection from massive stars. Our observations show evidence for mixing of distinct gas components with different degrees of processing. We observe an extra molecular component of highly processed gas on top of the already proposed less processed gas being transported to the central region of NGC 253. Such a multicomponent nature and optical depth effects may hinder the use of isotopic ratios based on a spatially unresolved line to infer the star formation history and/or initial stellar mass function properties galaxy nuclei.

Funder

MOST

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3