Elemental composition in quiescent prominences

Author:

Parenti S.,Del Zanna G.,Vial J.-C.

Abstract

Context. The first ionization potential (FIP) bias is currently used to trace the propagation of solar features ejected by the wind and solar eruptions (coronal mass ejections). The FIP bias also helps us to understand the formation of prominences, as it is a tracer for the solar origin of prominence plasma. Aims. This work aims to provide elemental composition and FIP bias in quiescent solar prominences. This is key information to link these features to remnants of solar eruptions measured in-situ within the heliosphere and to constrain the coronal or photospheric origin of prominence plasma. Methods. We used the differential emission measure technique to derive the FIP bias of two prominences. Quiet Sun chromospheric and transition region data were used to test the atomic data and lines formation processes. We used lines from low stage of ionization of Si, S, Fe, C, N, O, Ni, Mg, and Ne, constraining the FIP bias in the range 4.2 ≤ log T ≤ 5.8. We adopted a density-dependent ionization equilibrium. Results. We showed that the two prominences have photospheric composition. We confirmed a photospheric composition in the quiet Sun. We also identified opacity and/or radiative excitation contributions to the line formation of a few lines regularly observed in prominences. Conclusions. With our results we thus provide important elements for correctly interpreting the upcoming Solar Orbiter/SPICE spectroscopic data and to constrain prominence formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiative loss and ion-neutral collisional effects in astrophysical plasmas;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

2. Extreme-ultraviolet brightenings in the quiet Sun: Signatures in spectral and imaging data from the Interface Region Imaging Spectrograph;Astronomy & Astrophysics;2023-08

3. A benchmark study of atomic models for the transition region against quiet Sun observations;Monthly Notices of the Royal Astronomical Society;2023-03-17

4. The Transition Region of Solar Flare Loops;The Astrophysical Journal;2023-02-01

5. Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS;The Astrophysical Journal;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3