Kinematic study of the molecular gas associated with two cometary globules in Sh2−236

Author:

Ortega M. E.,Paron S.,Areal M. B.,Rubio M.

Abstract

Aims. Cometary globules, dense molecular gas structures exposed to UV radiation, are found inside H II regions. Understanding the nature and origin of these structures through a kinematic study of the molecular gas could be useful to advance in our knowledge of the interplay between radiation and molecular gas. Methods. Using the Atacama Submillimeter Telescope Experiment (Chile), we carried out molecular observations toward two cometary globules (Sim129 and Sim130) in the H II region Sh2−236. We mapped two regions of about 1′ × 1′ with the 12CO J = 3−2 and HCO+ J = 4−3 lines. Additionally, we carried out two single pointings with the C2H N = 4–3, HNC, and HCN J = 4−3 transitions. The angular resolution was about 22′′. We combined our molecular observations with public infrared and optical data to analyze the distribution and kinematics of the molecular gas. Results. We find kinematic signatures of infalling gas in the 12CO J = 3−2 and C2H N = 4−3 spectra toward Sim 129. We detect HCO+, HCN, and HNC J = 4−3 only toward Sim 130. The HCN/HNC integrated ratio of about three found in Sim 130 suggests that the possible star-formation activity inside this globule has not yet ionized the gas. The location of the NVSS source 052255+33315, which peaks toward the brightest border of the globule, supports this scenario. The non-detection of these molecules toward Sim 129 could be due to the radiation field arising from the star-formation activity inside this globule. The ubiquitous presence of the C2H molecule toward Sim 129 and Sim 130 evidences the action of the nearby O-B stars irradiating the external layer of both globules. Based on the mid-infrared 5.8 μm emission, we identify two new structures: (1) a region of diffuse emission (R1) located, in projection, in front of the head of Sim 129 and (2) a pillar-like feature (P1) placed besides Sim 130. Based on the 12CO J = 3−2 transition, we find molecular gas associated with Sim 129, Sim 130, R1, and P1 at radial velocities of −1.5, −11, +10, and +4 km s−1, respectively. Therefore, while Sim 129 and P1 are located at the far side of the shell, Sim 130 is placed at the near side, consistent with earlier results. Finally, the molecular gas related to R1 exhibits a radial velocity that differs in more than 11 km s−1 with the radial velocity of S129, which suggests that while S129 is located at the far side of the expanding shell, R1 would be placed well beyond.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3