Modelling ion populations in astrophysical plasmas: carbon in the solar transition region

Author:

Dufresne R. P.ORCID,Del Zanna G.ORCID

Abstract

The aim of this work is to improve the modelling of ion populations in higher density, lower temperature astrophysical plasmas, of the type commonly found in lower solar and stellar atmospheres. Ion population models for these regions frequently employ the coronal approximation, which assumes conditions more suitable to the upper solar atmosphere, where high temperatures and lower densities prevail. The assumed conditions include all ions being in the ground state and steady-state equilibrium, where there is sufficient time for ionisation and recombination to take place. Using the coronal approximation for modelling the solar transition region gives theoretical lines intensities for the Li-like and Na-like isoelectronic sequences which are often factors of two to five times lower than observed. The works of Burgess & Summers (1969, ApJ, 157, 1007) and Nussbaumer & Storey (1975, A&A, 44, 321) show the important part ions in excited levels play when included in the modelling. As density increases metastable levels become populated and ionisation rates increase, whereas dielectronic recombination through highly excited levels is suppressed. Photo-ionisation is also shown by Nussbaumer & Storey to have an effect on the charge-state distribution of carbon in these regions. Their models, however, use approximations for the atomic rates to determine the ion balance. Presented here is the first stage in updating these earlier models of carbon by using rates from up-to-date atomic calculations and more recent photo-ionising radiances. Where atomic rates were not readily available, in the case of electron impact direct ionisation and excitation–auto-ionisation, new calculations were made using the Flexible Atomic Code and Autostructure, and compared to theoretical and experimental studies. The effects each atomic process has on the ion populations as density changes is illustrated, and final results from the modelling are compared to the earlier works. Lastly, the new results for ion populations were used to predict line intensities for the solar transition region in the quiet Sun. In comparison to coronal approximation modelling the new results show significantly improved agreement with observations.

Funder

University of Cambridge Isaac Newton Studentship

STFC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3