Inferring black hole spins and probing accretion/ejection flows in AGNs with the Athena X-ray Integral Field Unit

Author:

Barret Didier,Cappi Massimo

Abstract

Context. Active galactic nuclei (AGNs) display complex X-ray spectra that exhibit a variety of emission and absorption features. These are commonly interpreted as a combination of (i) a relativistically smeared reflection component, resulting from the irradiation of an accretion disk by a compact hard X-ray source; (ii) one or several warm or ionized absorption components produced by AGN-driven outflows crossing our line of sight; and (iii) a nonrelativistic reflection component produced by more distant material. Disentangling these components via detailed model fitting could be used to constrain the black hole spin, geometry, and characteristics of the accretion flow, as well as of the outflows and surroundings of the black hole. Aims. We investigate how a high-throughput high-resolution X-ray spectrometer such as the Athena X-ray Integral Field Unit (X-IFU) can be used to this aim, using the state-of-the-art reflection model relxill in a lamp-post geometrical configuration. Methods. We simulated a representative sample of AGN spectra, including all necessary model complexities, as well as a range of model parameters going from standard to more extreme values, and considered X-ray fluxes that are representative of known AGN and quasar populations. We also present a method to estimate the systematic errors related to the uncertainties in the calibration of the X-IFU. Results. In a conservative setting, in which the reflection component is computed self consistently by the relxill model from the pre-set geometry and no iron overabundance, the mean errors on the spin and height of the irradiating source are < 0.05 and ∼0.2 Rg (in units of gravitational radius). Similarly, the absorber parameters (column density, ionization parameter, covering factor, and velocity) are measured to an accuracy typically less than ∼5% over their allowed range of variations. Extending the simulations to include blueshifted ultra-fast outflows, we show that X-IFU could measure their velocity with statistical errors < 1%, even for high-redshift objects (e.g., at redshifts ∼2.5). Conclusion. The simulations presented here demonstrate the potential of the X-IFU to understand how black holes are powered and how they shape their host galaxies. The accuracy in recovering the physical model parameters encoded in their X-ray emission is reached thanks to the unique capability of X-IFU to separate and constrain narrow and broad emission and absorption components.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference124 articles.

1. Athena: ESA's X-ray observatory for the late 2020s

2. Barret D., Nandra K., Barcons X., et al. 2013, SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 447

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3