Evolution of helium star plus carbon-oxygen white dwarf binary systems and implications for diverse stellar transients and hypervelocity stars

Author:

Neunteufel P.ORCID,Yoon S.-C.ORCID,Langer N.

Abstract

Context. Helium accretion induced explosions in CO white dwarfs (WDs) are considered promising candidates for a number of observed types of stellar transients, including supernovae (SNe) of Type Ia and Type Iax. However, a clear favorite outcome has not yet emerged. Aims. We explore the conditions of helium ignition in the WD and the final fates of helium star-WD binaries as functions of their initial orbital periods and component masses. Methods. We computed 274 model binary systems with the Binary Evolution Code, in which both components are fully resolved. Both stellar and orbital evolution were computed including mass and angular momentum transfer, tides, gravitational wave emission, differential rotation, and internal hydrodynamic and magnetic angular momentum transport. We worked out the parts of the parameter space leading to detonations of the accreted helium layer on the WD, likely resulting in the complete disruption of the WD to deflagrations, where the CO core of the WD may remain intact and where helium ignition in the WD is avoided. Results. We find that helium detonations are expected only in systems with the shortest initial orbital periods, and for initially massive WDs (MWD ≥ 1.0 M) and lower mass donors (Mdonor ≤ 0.8 M), which have accumulated helium layers mostly exceeding 0.1 M. Upon detonation, these systems would release the donor as a hypervelocity pre-WD runaway star, for which we predict the expected range of kinematic and stellar properties. Systems with more massive donors or initial periods exceeding 1.5 h likely undergo helium deflagrations after accumulating 0.1 − 0.001 M of helium. Helium ignition in the WD is avoided in systems with helium donor stars below ∼0.6 M, and leads to three distinctly different groups of double WD systems. Conclusions. The size of the parameter space open to helium detonation corresponds to only about 3% of the galactic SN Ia rate and to 10% of the SN Iax rate, while the predicted large amounts of helium (0.1 M) in progenitors cannot easily be reconciled with observations of archetypical SN Ia. However, the transients emerging from these systems may contribute significantly to massive helium novae, calcium-rich SNe Ib, and, potentially, very close double degenerate systems that may eventually produce either ordinary or peculiar SNe Ia, or, for the smallest considered masses, R Coronae Borealis stars.

Funder

Deutsche Forschungsgemeinschaft

Korea Astronomy and Space Science Institute

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference122 articles.

1. The enigmatic outburst of V445 Puppis – A possible helium nova?

2. Electron Captures on14N as a Trigger for Helium Shell Detonations

3. Benz W. 1997, in NATO Advanced Science Institutes (ASI) Series C, eds. Ruiz-Lapuente P., Canal R., & Isern J., 486, 457

4. Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3