FIRTEZ-dz

Author:

Pastor Yabar A.,Borrero J. M.,Ruiz Cobo B.

Abstract

We present a numerical code that solves the forward and inverse problem of the polarized radiative transfer equation in geometrical scale under the Zeeman regime. The code is fully parallelized, making it able to easily handle large observational and simulated datasets. We checked the reliability of the forward and inverse modules through different examples. In particular, we show that even when properly inferring various physical parameters (temperature, magnetic field components, and line-of-sight velocity) in optical depth, their reliability in height-scale depends on the accuracy with which the gas-pressure or density are known. The code is made publicly available as a tool to solve the radiative transfer equation and perform the inverse solution treating each pixel independently. An important feature of this code, that will be exploited in the future, is that working in geometrical-scale allows for the direct calculation of spatial derivatives, which are usually required in order to estimate the gas pressure and/or density via the momentum equation in a three-dimensional volume, in particular the three-dimensional Lorenz force.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3