Proximate molecular quasar absorbers

Author:

Noterdaeme P.ORCID,Balashev S.ORCID,Krogager J.-K.ORCID,Srianand R.ORCID,Fathivavsari H.,Petitjean P.,Ledoux C.ORCID

Abstract

We present results from a search for strong H2 absorption systems proximate to quasars (zabs ≈ zem) in the Sloan Digital Sky Survey (SDSS) Data Release 14. The search is based on the Lyman-Werner band signature of damped H2 absorption lines without any prior on the associated metal or neutral hydrogen content. This has resulted in the detection of 81 systems with N(H2) ∼ 1019 − 1020 cm−2 located within a few thousand km s−1 from the quasar. Compared to a control sample of intervening systems, this implies an excess of proximate H2 systems by about a factor of 4 to 5. The incidence of H2 systems increases steeply with decreasing relative velocity, reaching an order of magnitude higher than expected from intervening statistics at Δv <  1000 km s−1. The most striking feature of the proximate systems compared to the intervening ones is the presence of Ly − α emission in the core of the associated damped H I absorption line in about half of the sample. This puts constraints on the relative projected sizes of the absorbing clouds to those of the quasar line emitting regions. Using the SDSS spectra, we estimate the H I, metal and dust content of the systems, which are found to have typical metallicities of one tenth Solar, albeit with a large spread among individual systems. We observe trends between the fraction of leaking Ly − α emission and the relative absorber-quasar velocity as well as with the excitation of several metal species, similar to what has been seen in metal-selected proximate DLAs. With the help of theoretical H I-H2 transition relations, we show that the presence of H2 helps to break the degeneracy between density and strength of the UV field as main sources of excitation and hence provides unique constraints on the possible origin and location of the absorbing clouds. We suggest that most of these systems originate from galaxies in the quasar group, although a small fraction of them could be located in the quasar host as well. We conclude that follow-up observations are still required to investigate the chemical and physical conditions in individual clouds and to assess the importance of AGN feedback for the formation and survival of H2 clouds.

Funder

Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3