The chemical structure of the very young starless core L1521E

Author:

Nagy Z.,Spezzano S.,Caselli P.,Vasyunin A.,Tafalla M.,Bizzocchi L.,Prudenzano D.,Redaelli E.

Abstract

Context. L1521E is a dense starless core in Taurus that was found to have relatively low molecular depletion by earlier studies, thus suggesting a recent formation. Aims. We aim to characterize the chemical structure of L1521E and compare it to the more evolved L1544 pre-stellar core. Methods. We have obtained ~2.5 × 2.5 arcminute maps toward L1521E using the IRAM-30 m telescope in transitions of various species, including C17O, CH3OH, c-C3H2, CN, SO, H2CS, and CH3CCH. We derived abundances for the observed species and compared them to those obtained toward L1544. We estimated CO depletion factors using the C17O IRAM-30 m map, an N(H2) map derived from Herschel/SPIRE data and a 1.2 mm dust continuum emission map obtained with the IRAM-30 m telescope. Results. Similarly to L1544, c-C3H2 and CH3OH peak at different positions. Most species peak toward the c-C3H2 peak including C2S, C3S, HCS+, HC3N, H2CS, CH3CCH, and C34S. C17O and SO peak close to both the c-C3H2 and the CH3OH peaks. CN and N2H+ peak close to the Herschel dust peak. We found evidence of CO depletion toward L1521E. The lower limit of the CO depletion factor derived toward the Herschel dust peak is 4.3±1.6, which is about a factor of three lower than toward L1544. We derived abundances for several species toward the dust peaks of L1521E and L1544. The abundances of most sulfur-bearing molecules such as C2S, HCS+, C34S, C33S, and HCS+ are higher toward L1521E than toward L1544 by factors of ~2–20, compared to the abundance of A-CH3OH. The abundance of methanol is very similar toward the two cores. Conclusions. The fact that the abundances of sulfur-bearing species toward L1521E are higher than toward L1544 suggests that significant sulfur depletion takes place during the dynamical evolution of dense cores, from the starless to pre-stellar stage. The CO depletion factor measured toward L1521E suggests that CO is more depleted than previously found. Similar CH3OH abundances between L1521E and L1544 hint that methanol is forming at specific physical conditions in the Taurus Molecular Cloud Complex, characterized by densities of a few ×104 cm−3 and N(H2) ≳ 1022 cm−2, when CO starts to catastrophically freeze-out, while water can still be significantly photodissociated, so that the surfaces of dust grains become rich in solid CO and CH3OH, as already found toward L1544. Methanol can thus provide selective crucial information about the transition region between dense cores and the surrounding parent cloud.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3