3C 294 revisited: Deep Large Binocular Telescope AO NIR images and optical spectroscopy

Author:

Heidt J.ORCID,Quirrenbach A.,Hoyer N.,Thompson D.,Pramskiy A.,Agapito G.,Esposito S.,Gredel R.,Miller D.,Pinna E.,Puglisi A.,Rossi F.,Seifert W.,Taylor G.

Abstract

Context. High redshift radio galaxies are among the most massive galaxies at their redshift, are often found at the center of protoclusters of galaxies, and are expected to evolve into the present day massive central cluster galaxies. Thus they are a useful tool to explore structure formation in the young Universe. Aims. 3C 294 is a powerful FR II type radio galaxy at z = 1.786. Past studies have identified a clumpy structure, possibly indicative of a merging system, as well as tentative evidence that 3C 294 hosts a dual active galactic nucleus (AGN). Due to its proximity to a bright star, it has been subject to various adaptive optics imaging studies. Methods. In order to distinguish between the various scenarios for 3C 294, we performed deep, high-resolution adaptive optics near-infrared imaging and optical spectroscopy of 3C 294 with the Large Binocular Telescope. Results. We resolve the 3C 294 system into three distinct components separated by a few tenths of an arcsecond on our images. One is compact, the other two are extended, and all appear to be non-stellar. The nature of each component is unclear. The two extended components could be a galaxy with an internal absorption feature, a galaxy merger, or two galaxies at different redshifts. We can now uniquely associate the radio source of 3C 294 with one of the extended components. Based on our spectroscopy, we determined a redshift of z = 1.784 ± 0.001, which is similar to the one previously cited. In addition we found a previously unreported emission line at λ6749.4 Å in our spectra. It is not clear that it originates from 3C 294. It could be the Ne [IV] doublet λ2424/2426 Å at z = 1.783, or belong to the compact component at a redshift of z ∼ 4.56. We thus cannot unambiguously determine whether 3C 294 hosts a dual AGN or a projected pair of AGNs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Reduction Recipes;Astronomy in the Near-Infrared - Observing Strategies and Data Reduction Techniques;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3