Water masers in Compton-thick AGN

Author:

Castangia P.ORCID,Surcis G.ORCID,Tarchi A.ORCID,Caccianiga A.,Severgnini P.ORCID,Della Ceca R.

Abstract

Aims. Investigations of H2O maser galaxies at X-ray energies reveal that most active galactic nuclei (AGN) associated with water masers are characterized by high levels of absorption. With the aim of finding new maser sources for possible interferometric follow-ups, we have searched for water maser emission in a well-defined sample of heavily absorbed AGN (NH >  1023 cm−2), including Compton-thick (CT) sources. Methods. Previous surveys already searched for 22 GHz water maser emission in all the galaxies in this sample. With the goal of providing a detection or a stringent upper limit on the H2O luminosity, we reobserved some of the non-detected sources with the Green Bank Telescope. A new luminous H2O maser (LH2O ∼ 200 L) was detected in the mid-IR-bright Seyfert 2 galaxy IRAS 15480−0344 and then followed-up with the Very Long Baseline Array. In order to shed light on the origin of the maser (jet, outflow, or disk), we recently observed the radio continuum emission in IRAS 15480-0344 with the European VLBI network (EVN) at 1.7 and 5.0 GHz. Results. With the newly discovered megamaser in IRAS 15480−0344 revealing a narrow (∼0.6 km s−1) and a broad (∼90 km s−1) component, the maser detection rate of the CT AGN sample is 50% (18/36), which is one of the highest ever found in maser surveys. The EVN maps show two bright sources (labeled SW and NE) in the nuclear region of IRAS 15480−0344, which we interpret as jet knots tracing regions where the radio plasma impacts dense molecular clouds. The narrow maser feature is approximately at the center of the imaginary line connecting the two continuum sources, likely pinpointing the core, and might be associated with the accretion disk or a nuclear outflow. The location of the broad maser feature, instead, coincides with source NE, suggesting that the maser emission might be produced by a jet-cloud interaction, as it was proposed for NGC 1068 and Mrk 348.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3