Eigenvectors, Circulation, and Linear Instabilities for Planetary Science in 3 Dimensions (ECLIPS3D)

Author:

Debras F.ORCID,Mayne N.,Baraffe I.,Goffrey T.,Thuburn J.

Abstract

Context. The study of linear waves and instabilities is necessary to understand the physical evolution of an atmosphere, and can provide physical interpretation of the complex flows found in simulations performed using global circulation models (GCMs). In particular, the acceleration of superrotating flow at the equator of hot Jupiters has mostly been studied under several simplifying assumptions, the relaxing of which may impact final results. Aims. We develop and benchmark a publicly available algorithm to identify the eigenmodes of an atmosphere around any initial steady state. We also solve for linear steady states indicated to be essential in existing theories of the acceleration of hot Jupiter superrotation. Methods. We linearise the hydrodynamical equations of a planetary atmosphere in a steady state with arbitrary velocities and thermal profile. We then discretise the linearised equations on an appropriate staggered grid, and solve for eigenvectors and linear steady solutions with the use of a parallel library for linear algebra: ScaLAPACK. We also implement a posteriori calculation of an energy equation in order to obtain more information on the underlying physics of the mode. Results. Our code is tested using classical wave and instability test cases in multiple geometries (2D, 3D, two-layer equivalent depth). The steady linear circulation calculations also reproduce expected results for the atmosphere of hot Jupiters. We finally show the robustness of our energy equation, and its power to obtain physical insight into the modes. Conclusions. We developed and tested a code for the study of linear processes in planetary atmospheres with an arbitrary steady state. The calculation of an a posteriori energy equation provides both increased robustness and physical meaning to the obtained eigenmodes. This code can be applied to various problems, and notably used to further study the initial spin up of superrotation of GCM simulations of hot Jupiters.

Funder

H2020 European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3