Observations on spatial variations of the Sr I 4607 Å scattering polarization signals at different limb distances with ZIMPOL

Author:

Dhara Sajal Kumar,Capozzi Emilia,Gisler Daniel,Bianda Michele,Ramelli Renzo,Berdyugina Svetlana,Alsina Ernest,Belluzzi Luca

Abstract

Context. The Sr I 4607 Å spectral line shows one of the strongest scattering polarization signals in the visible solar spectrum. The amplitude of this polarization signal is expected to vary at granular spatial scales, due to the combined action of the Hanle effect and the local anisotropy of the radiation field. Observing these variations would be of great interest because it would provide precious information on the small-scale activity of the solar photosphere. At present, few detections of such spatial variations have been reported. This is due to the difficulty of these measurements, which require combining high spatial (∼0.1″), spectral (≤20 mÅ), and temporal resolution (< 1 min) with increased polarimetric sensitivity (∼10−4). Aims. We aim to detect spatial variations at granular scales of the scattering polarization peak of the Sr I 4607 Å line at different limb distances, and to study the correlation with the continuum intensity. Methods. Using the Zurich IMaging POLarimeter (ZIMPOL) system mounted at the GREGOR telescope and spectrograph in Tenerife, Spain, we carried out spectro-polarimetric measurements to obtain the four Stokes parameters in the Sr I line at different limb distances, from μ = 0.2 to μ = 0.8, on the solar disk. Results. Spatial variations of the scattering polarization signal in the Sr I 4607 Å line, with a spatial resolution of about 0.66″, are clearly observed at every μ. The spatial scale of these variations is comparable to the granular size. A statistical analysis reveals that the linear scattering polarization amplitude in this Sr I spectral line is positively correlated with the intensity in the continuum, corresponding to the granules, at every μ.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference19 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3