Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm

Author:

Rigault M.ORCID,Neill J. D.ORCID,Blagorodnova N.,Dugas A.,Feeney M.,Walters R.,Brinnel V.,Copin Y.ORCID,Fremling C.,Nordin J.,Sollerman J.ORCID

Abstract

Current time domain facilities are discovering hundreds of new galactic and extra-galactic transients every week. Classifying the ever-increasing number of transients is challenging, yet crucial to furthering our understanding of their nature, discovering new classes, and ensuring sample purity, for instance, for Supernova Ia cosmology. The Zwicky Transient Facility is one example of such a survey. In addition, it has a dedicated very-low resolution spectrograph, the SEDMachine, operating on the Palomar 60-inch telescope. This spectrograph’s primary aim is object classification. In practice most, if not all, transients of interest brighter than ∼19 mag are typed. This corresponds to approximately 10–15 targets a night. In this paper, we present a fully automated pipeline for the SEDMachine. This pipeline has been designed to be fast, robust, stable and extremely flexible. pysedm enables the fully automated spectral extraction of a targeted point source object in less than five minutes after the end of the exposure. The spectral color calibration is accurate at the few percent level. In the 19 weeks since pysedm entered production in early August of 2018, we have classified, among other objects, about 400 Type Ia supernovae and 140 Type II supernovae. We conclude that low resolution, fully automated spectrographs such as the “SEDMachine with pysedm” installed on 2-m class telescopes within the southern hemisphere could allow us to automatically and simultaneously type and obtain a redshift for most (if not all) bright transients detected by LSST within z <  0.2, notably potentially all Type Ia Supernovae. In comparison with the current SEDM design, this would require higher spectral resolution (R ≳ 1000) and slightly improved throughput. With this perspective in mind, pysedm is designed to easily be adaptable to any IFU-like spectrograph.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3