Author:
Kruuse M.,Tempel E.,Kipper R.,Stoica R. S.
Abstract
Context. Galaxy filaments are the dominant feature in the overall structure of the cosmic web. The study of the filamentary web is an important aspect in understanding galaxy evolution and the evolution of matter in the Universe. A map of the filamentary structure is an adequate probe of the web.
Aims. We propose that photometric redshift galaxies are significantly positively associated with the filamentary structure detected from the spatial distribution of spectroscopic redshift galaxies. The long-term aim is to use the photometric galaxies in addition to spectroscopic galaxies to create a more detailed and far-reaching map of the filamentary structure.
Methods. The catalogues of spectroscopic and photometric galaxies are seen as point-process realisations in a sphere, and the catalogue of filamentary spines is proposed to be a realisation of a random set in a sphere. The positive association between these sets was studied using a bivariate J-function, which is a summary statistics studying clustering. A quotient D was built to estimate the distance distribution of the filamentary spine to galaxies in comparison to the distance distribution of the filamentary spine to random points in 3-dimensional Euclidean space. This measure also gives a physical distance scale to the distances between filamentary spines and the studied sets of galaxies. In the 3-dimensional case, galaxies and random points are described as line of sights following through their positions on the sphere.
Results. The bivariate J-function shows a statistically significant clustering effect in between filamentary spines and photometric redshift galaxies. The quotient D confirms the previous result that smaller distances exist with higher probability between the photometric galaxies and filaments. The trend of smaller distances between the objects grows stronger at higher redshift. Additionally, the quotient D for photometric galaxies gives a rough estimate for the filamentary spine width of about 1 Mpc.
Conclusions. Photometric redshift galaxies are positively associated with filamentary spines detected from the spatial distribution of spectroscopic galaxies. In addition to the spatial distribution of spectroscopic galaxies, the information embedded in the photometric galaxies could contribute greatly to the detection of cosmic web structures.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference48 articles.
1. Submegaparsec individual photometric redshift estimation from cosmic web constraints
2. Baddeley A., Bárány I., & Schneider R. 2007, Stochastic Geometry: Lectures given at the CIME Summer School held in Martina Franca, Italy, September 13–18, 2004, 1
3. Baddeley A., Rubak E., & Turner R. 2015, Spatial Point Patterns: Methodology and Applications with R (Boca Raton: CRC Press)
4. Photometric redshifts for the SDSS Data Release 12
5. Benitez N., Dupke R., Moles M., et al. 2014, ArXiv e-prints [arXiv:1403.5237]
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献