Formation of amines: hydrogenation of nitrile and isonitrile as selective routes in the interstellar medium

Author:

Nguyen T.ORCID,Fourré I.ORCID,Favre C.,Barois C.,Congiu E.ORCID,Baouche S.,Guillemin J.-C.ORCID,Ellinger Y.,Dulieu F.

Abstract

Context. Beyond NH3, only one primary alkylamine, CH3NH2, has been identified in the interstellar medium and the reason why is still not understood: its formation could occur in the gas phase or in icy environments. Aims. To consider any possible difference between the formation of primary and secondary amines, we studied the hydrogenation processes of CH3CN and CH3NC, which would lead to the simple primary CH3CH2NH2 and secondary CH3NHCH3 amines, respectively. Methods. Experimentally, the hydrogenation of CH3CN and CH3NC was carried out under ultra-high vacuum, using two beamlines to inject the nitrile/isonitrile and H onto substrate surfaces of gold or water ice. The reactions were monitored using infrared spectroscopy and the products were followed by mass spectrometry. Theoretically, the energetics of the hydrogenation paths were determined using the M06-2X functional after benchmarking against post Hartree–Fock procedures. Meanwhile, a survey of the high-mass star forming region W51/e2 has been performed. Results. Following co-deposition of CH3CN and H, we show that these species do not react together between 10 and 60 K. For CH3NC we found that the hydrogenation process works all the way through the CH3NHCH3 end product; we also identified the CH3NCH2 intermediate together with side products, CH4 and HCN, showing that the isonitrile backbone is breaking. These results are consistent with the calculations of a high barrier on the first hydrogenation step for CH3CN and a lower barrier for CH3NC. Conclusions. The formation of CH3CH2NH2 by hydrogenation of CH3CN appears rather unlikely in both the gas phase and ice environment whereas that of CH3NHCH3 is a clear possibility. The limiting factor appears to be the efficiency of the tunneling effect through the first activation barrier on the reaction paths. More surveys are required for further insight into the search for amines.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3