The survey of planetary nebulae in Andromeda (M 31)

Author:

Bhattacharya SouradeepORCID,Arnaboldi MagdaORCID,Caldwell Nelson,Gerhard Ortwin,Blaña Matías,McConnachie Alan,Hartke JohannaORCID,Guhathakurta Puragra,Pulsoni ClaudiaORCID,Freeman Kenneth C.

Abstract

Context.The age–velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M 31) in comparison with the Milky Way.Aims.We use planetary nebulae (PNe) to obtain the age–velocity dispersion relation in different radial bins of the M 31 disc.Methods.We separate the observed PNe sample based on their extinction values into two distinct age populations in the M 31 disc. The observed velocities of our high- and low-extinction PNe, which correspond to higher- and lower-mass progenitors, respectively, are fitted in de-projected elliptical bins to obtain their rotational velocities,Vϕ, and corresponding dispersions,σϕ. We assign ages to the two PN populations by comparing central-star properties of an archival sub-sample of PNe, that have models fitted to their observed spectral features, to stellar evolution tracks.Results.For the high- and low-extinction PNe, we find ages of ∼2.5 and ∼4.5 Gyr, respectively, with distinct kinematics beyond a deprojected radiusRGC = 14 kpc. AtRGC = 17–20 kpc, which is the equivalent distance in disc scale lengths of the Sun in the Milky Way disc, we obtainσϕ,  2.5 Gyr = 61 ± 14 km s−1andσϕ,  4.5 Gyr = 101 ± 13 km s−1. The age–velocity dispersion relation for the M 31 disc is obtained in two radial bins,RGC = 14–17 and 17–20 kpc.Conclusions.The high- and low-extinction PNe are associated with the young thin and old thicker disc of M 31, respectively, whose velocity dispersion values increase with age. These values are almost twice and three times that of the Milky Way disc stellar population of corresponding ages, respectively. From comparison with simulations of merging galaxies, we find that the age–velocity dispersion relation in the M 31 disc measured using PNe is indicative of a single major merger that occurred 2.5–4.5 Gyr ago with an estimated merger mass ratio ≈1:5.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Action-based dynamical models of M31-like galaxies;Monthly Notices of the Royal Astronomical Society;2024-08-15

2. Understanding stellar populations in thin and thick discs of edge-on galaxies with MUSE – I. The case of the reignited S0 galaxy ESO 544-27;Monthly Notices of the Royal Astronomical Society;2024-06-07

3. Asymmetric drift in MaNGA: mass and radially dependent stratification rates in galaxy discs;Monthly Notices of the Royal Astronomical Society;2024-05-06

4. Bar-driven Gas Dynamics of M31;The Astrophysical Journal;2024-02-23

5. On the α/Fe Bimodality of the M31 Disks;The Astrophysical Journal Letters;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3