12CO and 13CO J = 3–2 observations toward N11 in the Large Magellanic Cloud

Author:

Celis Peña M.,Paron S.,Rubio M.,Herrera C. N.,Ortega M. E.

Abstract

Aims. After 30 Doradus, N11 is the second largest and brightest nebula in the Large Magellanic Cloud (LMC). This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of 12CO (J = 1–0 and 2–1), and in some particular regions, pointings of the 13CO J = 1–0 and 2–1 lines were also performed. Observations of higher CO rotational transitions are needed to map gas with higher critical densities, which are useful to study the physical conditions of the gas component and its relation with the UV radiation more accurately. Methods. Using the Atacama Submillimeter Telescope Experiment, we mapped the whole extension of the N11 nebula in the 12CO J = 3–2 line and three subregions in the 13CO J = 3–2 line. The regions mapped in the 13CO J = 3–2 were selected with the criterion that they were to be exposed to the radiation in different ways: a region lying across the nebula, which is related to the OB association LH10 (N11B), another region that it is associated with the southern part of the nebula, which is related to the OB association LH13 (N11D), and finally an area farther away in the southwest without any embedded OB association (N11I). Results. We found that the morphology of the molecular clouds lying in each region shows some signatures that could be explained by the expansion of the nebulae and the action of the radiation. Fragmentation generated in a molecular shell due to the expansion of the N11 nebula is suggested. The integrated line ratios 12CO/13CO show evidence of selective photodissociation of the 13CO, and probably other mechanisms such as chemical fractionation. The values found for the integrated line ratios 12CO J = 3–2/1–0 are in agreement with values that were assumed in previous works, and the CO contribution to the continuum at 870 μm was derived directly. The distribution of the integrated line ratios 12CO J = 3–2/2–1 show indications of stellar feedback in N11B and N11D. The ratio between the virial and local thermal equilibrium (LTE) mass (Mvir/MLTE) is higher than unity in all analyzed molecular clumps, which suggests that the clumps are not gravitationally bounded and may be supported by external pressure. A non-LTE analysis suggests that we map gas with densities of about a few 103 cm−3. The molecular clump at N11B, the unique molecular feature with direct evidence of ongoing star formation, is the densest of the clumps we analyzed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3