X-ray analysis of the accreting supermassive black hole in the radio galaxy PKS 2251+11

Author:

Ronchini S.ORCID,Tombesi F.,Vagnetti F.,Panessa F.,Bruni G.

Abstract

Context. We have investigated the dichotomy between jetted and non-jetted active galactic nuclei (AGNs), focusing on the fundamental differences of these two classes in the accretion physics onto the central supermassive black hole (SMBH). We tested the validity of the unification model of AGNs through the characterization of the mutual interaction between accreting and outflowing matter in radio galaxies. Aims. Our aim is to study and constrain the structure, kinematics and physical state of the nuclear environment in the broad line radio galaxy (BLRG) PKS 2251+11. The high X-ray luminosity and the relative proximity make such AGN an ideal candidate for a detailed analysis of the accretion regions in radio galaxies. The investigation will help to shed light on the analogies and differences between the BLRGs and the larger class of radio-quiet Seyfert galaxies and hence on the processes that trigger the launch of a relativistic jet. Methods. We performed a spectral and timing analysis of a ∼64 ks observation of PKS 2251+11 in the X-ray band with XMM-Newton. We modeled the spectrum considering an absorbed power law superimposed to a reflection component. We performed a time-resolved spectral analysis to search for variability of the X-ray flux and of the individual spectral components. Results. We find that the power law has a photon index Γ = 1.8 ± 0.1, absorbed by an ionized partial covering medium with a column density NH = (10.1 ± 0.8) × 1023 cm−2, a ionization parameter log ξ = 1.3 ± 0.1 erg s−1 cm and a covering factor f ≃ 90%. Considering a density of the absorber typical of the broad line region (BLR), its distance from the central SMBH is of the order of r ∼ 0.1 pc. An Fe Kα emission line is found at 6.4 keV, whose intensity shows variability on timescales of hours. We derive that the reflecting material is located at a distance r ≳ 600rs, where rs is the Schwarzschild radius. Conclusions. Concerning the X-ray properties, we found that PKS 2251+11 does not differ significantly from the non-jetted AGNs, confirming the validity of the unified model in describing the inner regions around the central SMBH, but the lack of information regarding the state of the very innermost disk and SMBH spin still leaves unconstrained the origin of the jet.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3