Author:
Wang Shu-Xing,Huang Zhong-Kui,Wen Wei-Qiang,Chen Chong-Yang,Schippers Stefan,Xu Xin,Sardar Shahid,Khan Nadir,Wang Han-Bing,Dou Li-Jun,Mahmood Sultan,Zhao Dong-Mei,Zhu Xiao-Long,Mao Li-Jun,Ma Xiao-Ming,Li Jie,Tang Mei-Tang,Mao Rui-Shi,Yin Da-Yu,Yuan You-Jin,Yang Jian-Cheng,Shi Ying-Long,Dong Chen-Zhong,Ma Xin-Wen,Zhu Lin-Fan
Abstract
Electron-ion recombination rate coefficients for fluorine-like nickel ions have been measured by employing the merged-beam technique at the cooler storage ring CSRm at the Institute of Modern Physics in Lanzhou, China. The measured spectrum covers the energy range of 0–160 eV, including all the dielectronic recombination (DR) resonances associated with ΔN = 0 core excitations. The DR cross sections in this energy range were calculated by a relativistic configuration interaction method using the flexible atomic code (FAC). Radiative recombination (RR) cross sections were obtained from a modified version of the semi-classical Bethe & Salpeter (1957, Quantum Mechanics of One- and Two-Electron 56 Systems (Springer)) formula for hydrogenic ions. The comparison between the measurement and the calculation shows that the present theoretical model still needs to be improved at low collision energies. Temperature dependent plasma recombination rate coefficients were derived from the measured DR rate coefficients in the temperature range of 103–108 K and compared with the presently calculated result as well as previous available data in the literature. The experimentally derived data agree well with the theoretical calculations for temperatures where Ni19+ ions form in collisionally ionized plasmas. At lower temperatures typical for photo-ionized plasmas, discrepancies are found beyond the experimental uncertainty, which can be attributed to the disagreement between the measurement and the calculation of the low-lying DR resonances. The present experimental result benchmarks the plasma DR rate coefficients, in particular for temperatures below 105 K where the ΔN = 0 DR resonances dominate.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献