High-spectral resolution M-band observations of CO Rot-Vib absorption lines towards the Galactic center

Author:

Moultaka J.,Eckart A.,Tikare K.,Bajat A.

Abstract

Context. In the near- to mid-infrared wavelength domain, bright continuum sources in the central parsec of the Galactic center (GC) are subject to foreground absorption. These sources therefore represent ideal probes of the intervening material that is responsible for the absorption along the line of sight. Aims. Our aim is to shed light on the location and physics of the absorbing clouds. We try to find out which of the gaseous absorbing materials is intimately associated with the GC and which one is associated with clouds at a much larger distance. Methods. We used the capabilities of CRIRES spectrograph located at ESO Very Large Telescope in Chile to obtain absorption spectra of individual lines at a high spectral resolution of R = 50 000, that is, 5 km s−1. We observed the 12CO R(0), P(1), P(2), P(3), P(4), P(5), P(6), P(7) and P(9) transition lines, applied standard data reduction, and compared the results with literature data. Results. We present the results of CRIRES observations of 13 infrared sources located in the central parsec of the Galaxy. The data provide direct evidence for a complex structure of the interstellar medium along the line of sight and in the close environment of the central sources. In particular we find four cold foreground clouds at radial velocities vLSR of the order of −145, −85, −60, and −40 ± 15 km s−1 that show absorption in the lower transition lines from R(0) to P(2) and in all the observed spectra. We also find in all sources an absorption in velocity range of 50–60 km s−1, possibly associated with the so-called 50 km s−1 cloud and suggesting an extension of this cloud in front of the GC. Finally, we detect individual absorption lines that are probably associated with material much closer to the center and with the sources themselves, suggesting the presence of cold gas in the local region.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3