Abundances of sulphur molecules in the Horsehead nebula

Author:

Rivière-Marichalar P.ORCID,Fuente A.,Goicoechea J. R.,Pety J.ORCID,Le Gal R.ORCID,Gratier P.ORCID,Guzmán V.,Roueff E.ORCID,Loison J. C.ORCID,Wakelam V.ORCID,Gerin M.ORCID

Abstract

Context. Sulphur is one of the most abundant elements in the Universe (S/H ~ 1.3 × 10−5) and plays a crucial role in biological systems on Earth. The understanding of its chemistry is therefore of major importance. Aims. Our goal is to complete the inventory of S-bearing molecules and their abundances in the prototypical photodissociation region (PDR) the Horsehead nebula to gain insight into sulphur chemistry in UV irradiated regions. Based on the WHISPER (Wide-band High-resolution Iram-30 m Surveys at two positions with Emir Receivers) millimeter (mm) line survey, our goal is to provide an improved and more accurate description of sulphur species and their abundances towards the core and PDR positions in the Horsehead. Methods. The Monte Carlo Markov chain (MCMC) methodology and the molecular excitation and radiative transfer code RADEX were used to explore the parameter space and determine physical conditions and beam-averaged molecular abundances. Results. A total of 13 S-bearing species (CS, SO, SO2, OCS, H2CS – both ortho and para – HDCS, C2S, HCS+, SO+, H2S, S2H, NS and NS+) have been detected in the two targeted positions. This is the first detection of SO+ in the Horsehead and the first detection of NS+ in any PDR. We find a differentiated chemical behaviour between C–S and O–S bearing species within the nebula. The C–S bearing species C2S and o-H2CS present fractional abundances a factor of > two higher in the core than in the PDR. In contrast, the O–S bearing molecules SO, SO2, and OCS present similar abundances towards both positions. A few molecules, SO+, NS, and NS+, are more abundant towards the PDR than towards the core, and could be considered as PDR tracers. Conclusions. This is the first complete study of S-bearing species towards a PDR. Our study shows that CS, SO, and H2S are the most abundant S-bearing molecules in the PDR with abundances of approximately a few 10−9. We recall that SH, SH+, S, and S+ are not observable at the wavelengths covered by the WHISPER survey. At the spatial scale of our observations, the total abundance of S atoms locked in the detected species is <10−8, only ~0.1% of the cosmic sulphur abundance.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3