Abstract
Context.The precise determination of the present-day expansion rate of the Universe, expressed through the Hubble constantH0, is one of the most pressing challenges in modern cosmology. Assuming flat ΛCDM,H0inference at high redshift using cosmic microwave background data fromPlanckdisagrees at the 4.4σlevel with measurements based on the local distance ladder made up of parallaxes, Cepheids, and Type Ia supernovae (SNe Ia), often referred to as Hubble tension. Independent cosmological-model-insensitive ways to inferH0are of critical importance.Aims.We apply an inverse distance ladder approach, combining strong-lensing time-delay distance measurements with SN Ia data. By themselves, SNe Ia are merely good indicators of relative distance, but by anchoring them to strong gravitational lenses we can obtain anH0measurement that is relatively insensitive to other cosmological parameters.Methods.A cosmological parameter estimate was performed for different cosmological background models, both for strong-lensing data alone and for the combined lensing + SNe Ia data sets.Results.The cosmological-model dependence of strong-lensingH0measurements is significantly mitigated through the inverse distance ladder. In combination with SN Ia data, the inferredH0consistently lies around 73–74 km s−1Mpc−1, regardless of the assumed cosmological background model. Our results agree closely with those from the local distance ladder, but there is a > 2σtension withPlanckresults, and a ∼1.5σdiscrepancy with results from an inverse distance ladder includingPlanck, baryon acoustic oscillations, and SNe Ia. Future strong-lensing distance measurements will reduce the uncertainties inH0from our inverse distance ladder.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference63 articles.
1. Adhikari S., & Huterer D. 2019, ArXiv e-prints [arXiv:1905.02278]
2. Quasar lenses and pairs in the VST-ATLAS and Gaia
3. Agrawal P., Cyr-Racine F. Y., Pinner D., & Randall L. 2019, ArXiv e-prints [arXiv:1904.01016]
4. Cosmological implications of baryon acoustic oscillation measurements
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献