Infrared and sub-mm observations of outbursting young stars with Herschel and Spitzer

Author:

Postel A.ORCID,Audard M.,Vorobyov E.,Dionatos O.,Rab C.,Güdel M.

Abstract

Context. Episodic accretion plays an important role in the evolution of young stars. Although it has been under investigation for a long time, the origin of such episodic accretion events is not yet understood. Aims. We investigate the dust and gas emission of a sample of young outbursting sources in the infrared to get a better understanding of their properties and circumstellar material, and we use the results in a further work to model the objects. Methods. We used Herschel data, from our PI program of 12 objects and complemented with archival observations to obtain the spectral energy distributions (SEDs) and spectra of our targets. We report here the main characteristics of our sample, focussing on the SED properties and on the gas emission lines detected in the PACS and SPIRE spectra. Results. The SEDs of our sample show the diversity of the outbursting sources, with several targets showing strong emission in the far-infrared from the embedded objects. Most of our targets reside in a complex environment, which we discuss in detail. We detected several atomic and molecular lines, in particular rotational CO emission from several transitions from J = 38−37 to J = 4−3. We constructed rotational diagrams for the CO lines, and derived in three domains of assumed local thermodynamic equilibrium (LTE) temperatures and column densities, ranging mainly between 0−100 K and 400−500 K. We confirm correlation in our sample between intense CO J = 16−15 emission and the column density of the warm domain of CO, N(warm). We notice a strong increase in luminosity of HH 381 IRS and a weaker increase for PP 13 S, which shows the beginning of an outburst.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolving the binary components of the outbursting protostar HBC 494 with ALMA;Monthly Notices of the Royal Astronomical Society;2023-05-29

2. An APEX Study of Molecular Outflows in FUor-type Stars;The Astrophysical Journal;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3