The impact of the presence of water ice on the analysis of debris disk observations

Author:

Stuber T. A.ORCID,Wolf S.ORCID

Abstract

Context. The analysis of debris disk observations is often based on the assumption of a dust phase composed of compact spherical grains consisting of astronomical silicate. Instead, observations indicate the existence of water ice in debris disks. Aims. We quantify the impact of water ice as a potential grain constituent in debris disks on the disk parameter values estimated from photometric and spatially resolved observations in the mid- and far-infrared. Methods. We simulated photometric measurements and radial profiles of debris disks containing water ice and analyzed them by applying a disk model purely consisting of astronomical silicate. Subsequently, we quantified the deviations between the derived and the true parameter values. As stars in central positions we discuss a β Pic sibling and main-sequence stars with spectral types ranging from A0 to K5. To simulate observable quantities we employed selected observational scenarios regarding the choice of wavelengths and instrument characteristics. Results. For the β Pic stellar model and ice fractions ≥50% the derived inner disk radius is biased by ice sublimation toward higher values. However, the derived slope of the radial density profile is mostly unaffected. Along with an increasing ice fraction, the slope of the grain size distribution is overestimated by up to a median factor of ~1.2 for an ice fraction of 90%. At the same time, the total disk mass is underestimated by a factor of ~0.4. The reliability of the derived minimum grain size strongly depends on the spectral type of the central star. For an A0-type star the minimum grain size can be underestimated by a factor of ~0.2, while for solar-like stars it is overestimated by up to a factor of ~4–5. Neglecting radial profile measurements and using solely photometric measurements, the factor of overestimation increases for solar-like stars up to ~7–14.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3