Optimal machine-driven acquisition of future cosmological data

Author:

Kostić Andrija,Jasche Jens,Ramanah Doogesh Kodi,Lavaux Guilhem

Abstract

We present a set of maps classifying regions of the sky according to their information gain potential as quantified by Fisher information. These maps can guide the optimal retrieval of relevant physical information with targeted cosmological searches. Specifically, we calculated the response of observed cosmic structures to perturbative changes in the cosmological model and we charted their respective contributions to Fisher information. Our physical forward-modeling machinery transcends the limitations of contemporary analyses based on statistical summaries to yield detailed characterizations of individual 3D structures. We demonstrate this advantage using galaxy counts data and we showcase the potential of our approach by studying the information gain of the Coma cluster. We find that regions in the vicinity of the filaments and cluster core, where mass accretion ensues from gravitational infall, are the most informative with regard to our physical model of structure formation in the Universe. Hence, collecting data in those regions would be most optimal for testing our model predictions. The results presented in this work are the first of their kind to elucidate the inhomogeneous distribution of cosmological information in the Universe. This study paves a new way forward for the performance of efficient targeted searches for the fundamental physics of the Universe, where search strategies are progressively refined with new cosmological data sets within an active learning framework.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An antihalo void catalogue of the Local Super-Volume;Monthly Notices of the Royal Astronomical Society;2024-05-14

2. The information on halo properties contained in spectroscopic observations of late-type galaxies;Monthly Notices of the Royal Astronomical Society;2023-08-31

3. Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys;Monthly Notices of the Royal Astronomical Society;2023-02-09

4. Bayesian reconstruction of dark matter distribution from peculiar velocities: accounting for inhomogeneous Malmquist bias;Monthly Notices of the Royal Astronomical Society;2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3