The Fornax Cluster VLT Spectroscopic Survey

Author:

Chaturvedi AvinashORCID,Hilker Michael,Cantiello Michele,Napolitano Nicola R.,van de Ven Glenn,Spiniello Chiara,Fahrion Katja,Paolillo Maurizio,Gatto Massimiliano,Puzia Thomas

Abstract

The Fornax cluster provides an unparalleled opportunity of investigating the formation and evolution of early-type galaxies in a dense environment in detail. We aim at kinematically characterising photometrically detected globular cluster (GC) candidates in the core of the cluster. We used spectroscopic data from the Visible Multi Object Spectrograph at Very Large Telescope (VLT/VIMOS) from the FVSS survey in the Fornax cluster, covering one square degree around the central massive galaxy NGC 1399. We confirm a total of 777 GCs, almost doubling previously detected GCs, using the same dataset as was used before. Combined with previous literature radial velocity measurements of GCs in Fornax, we compile the most extensive spectroscopic GC sample of 2341 objects in this environment. We found that red GCs are mostly concentrated around major galaxies, while blue GCs are kinematically irregular and are widely spread throughout the core region of the cluster. The velocity dispersion profiles of blue and red GCs show a quite distinct behaviour. Blue GCs exhibit a sharp increase in the velocity dispersion profile from 250 to 400 km s−1 within 5 arcmin (∼29 kpc/∼1 reff of NGC 1399) from the central galaxy. The velocity dispersion profile of red GCs follows a constant value between 200 and 300 km s−1 until 8 arcmin (∼46 kpc/∼1.6 reff), and then rises to 350 km s−1 at 10 arcmin (∼58 kpc/∼2 reff). Beyond 10 arcmin and out to 40 arcmin (∼230 kpc/ ∼8 reff), blue and red GCs show a constant velocity dispersion of 300 ± 50 km s−1, indicating that both GC populations trace the cluster potential. We kinematically confirm and characterise the previously photometrically discovered overdensities of intra-cluster GCs. We found that these substructured intra-cluster regions in Fornax are dominated mostly by blue GCs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3