Evaluating the origins of the secondary bias based on the correlation of halo properties with the linear density field

Author:

Wang X.,Wang H.,Mo H. J.,Shi J. J.,Jing Y.

Abstract

Using two sets of large N-body simulations, we studied the origins of the correlations between halo assembly time (zf), concentration (vmax/v200), and spin (λ) with the large-scale evolved density field at given halo mass, namely, the secondary bias. We find that the secondary bias is a secondary effect resulting from the correlations of halo properties with the linear density estimated at the same comoving scale. Using the linear density on different scales, we find two types of correlations. The internal correlation, which reflects the correlation of halo properties with the mean linear over-density, δL, within the halo Lagrangian radius, RL, is positive for both zf and vmax/v200, and negative for λ. The external correlation, which describes the correlation of halo properties with linear overdensity at R > RL for a given δL, shows trends that are contrary to the internal correlation. Both of the external and internal correlations depend only weakly on halo mass, indicating a similar origin for halos of different masses. Our findings offer a transparent perspective on the origins of the secondary bias, which can be largely explained by the competition between the external and internal correlations with the correlation of the linear density field on different scales. The combination of these two types of correlations has the potential to establish the complex halo-mass dependence of the secondary bias observed in the simulations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3