Ground-based HCN submillimetre measurements in Titan’s atmosphere: an intercomparison with Herschel observations

Author:

Rengel M.,Shulyak D.,Hartogh P.,Sagawa H.,Moreno R.,Jarchow C.,Breitschwerdt D.

Abstract

Aims. The aim of this study is to measure the vertical distribution of HCN on Titan’s stratosphere using ground-based submillimetre observations acquired quasi-simultaneously with the Herschel ones. This allows us to perform a consistency check between space and ground-based observations and to build a reference mean HCN vertical profile in Titan’s stratosphere. Methods. Using APEX and IRAM 30-m, we obtained the spectral emission of HCN (4-3) and (3-2) lines. Observations were reduced with GILDAS-CLASS. We applied a line-by-line radiative transfer code to calculate the synthetic spectra of HCN, and a retrieval algorithm based on optimal estimation to retrieve the temperature and HCN vertical distributions. We used the standard deviation-based metric to quantify the dispersion between the ground-based and Herschel HCN profiles and the mean one. Results. Our derived HCN abundance profiles are consistent with an increase from 40 ppb at ~100 km to 4 ppm at ~200 km, which is an altitude region where the HCN signatures are sensitive. We also demonstrate that the retrieved HCN distribution is sensitive to the data information and is restricted to Titan’s stratosphere. The HCN obtained from APEX data is less accurate than the one from IRAM data because of the poorer data quality, and covers a narrower altitude range. Comparisons between our results and the values from Herschel show similar abundance distributions, with maximum differences of 2.5 ppm ranging between 100 and 300 km in the vertical range. These comparisons also allow us to inter-validate both data sets and indicate reliable and consistent measurements. The inferred abundances are also consistent with the vertical distribution in previous observational studies, with the profiles from ALMA, Cassini/CIRS, and SMA (the latest ones below ~230 km). Our HCN profile is also comparable to photochemical models by Krasnopolsky (2014) and Vuitton et al. (2019) below 230 km and consistent with that of Loison et al. (2015) above 250 km. However, it appears to show large differences with respect to the estimates by Loison et al. (2015), Dobrijevic & Loison (2018), and Lora et al. (2018) below 170 km, and by Dobrijevic & Loison (2018) and Lora et al. (2018) above 400 km, although they are similar in shape. We conclude that these particular photochemical models need improvement.

Funder

DFG

Center of Excellence Severo Ochoa

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3