Variation of the stellar color in high-magnification and caustic-crossing microlensing events

Author:

Sajadian S.ORCID,Jørgensen U. G.

Abstract

Context. To a first approximation, the microlensing phenomenon is achromatic and great advancements have been achieved with regard to the interpretation of the achromatic signals, leading to the discovery and characterization of well above 100 new exoplanets. At a higher order accuracy in the observations, microlensing has a chromatic component (a color term) that has thus far been explored to a much lesser extent. Aims. Here, we analyze the chromatic microlensing effect of four different physical phenomena, which have the potential to contribute key knowledge of the stellar properties that is not easily achievable with other methods of observation. Our simulation is limited to the case of main-sequence source stars. Methods. Microlensing is particularly sensitive to giant and sub-giant stars near the Galactic center. While this population can be studied in short snapshots by the largest telescopes in the world, a general monitoring and characterization of the population can be achieved by use of more accessible medium-sized telescopes with specialized equipment via dual-color monitoring from observatories at sites with excellent seeing. We limit the results of this study to what will be achievable from the Danish 1.54 m telescope at La Silla observatory based on the use of the existing dual-color lucky imaging camera. Such potential monitoring programs of the bulge population from medium-sized telescopes include the characterization of starspots, limb-darkening, the frequency of close-in giant planet companions, and gravity darkening for blended source stars. Results. We conclude our simulations with quantifying the likelihood of detecting these different phenomena per object where they are present to be ~60 and ~30% for the above-mentioned phenomena when monitored during both high-magnification and caustic crossings, respectively.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerically studying the degeneracy problem in extreme finite-source microlensing events;Monthly Notices of the Royal Astronomical Society;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3