Balmer continuum enhancement detected in a mini flare observed with IRIS

Author:

Joshi ReetikaORCID,Schmieder Brigitte,Heinzel Petr,Tomin James,Chandra RameshORCID,Vilmer NicoleORCID

Abstract

Context. Optical and near-UV continuum emissions in flares contribute substantially to the flare energy budget. Two mechanisms play an important role for continuum emission in flares: hydrogen recombination after sudden ionization at chromospheric layers, and transportation of the energy radiatively from the chromosphere to lower layers in the atmosphere, the so-called back-warming. Aims. The aim of the paper is to distinguish between these two mechanisms for the excess of the Balmer continuum observed in a flare. Methods. We combined the observations of the Balmer continuum obtained with the Interface Region Imaging Spectrograph (IRIS) (spectra and slit-jaw images (SJIs) 2832 Å) and hard X-ray (HXR) emission detected by the Fermi/Gamma Burst Monitor (GBM) during a mini flare. The calibrated Balmer continuum was compared to non-local thermodynamic equilibrium (LTE) radiative transfer flare models, and the radiated energy was estimated. Assuming thick target HXR emission, we calculated the energy of the nonthermal electrons detected by the Fermi/GBM and compared it to the radiated energy. Results. The favorable argument of a relation between the Balmer continuum excess and the HXR emission is that there is a good time coincidence between them. In addition, the shape of the maximum brightness in the 2832 SJIs, which is mainly due to this Balmer continuum excess, is similar to that of the Fermi/GBM light curve. The electron-beam flux estimated from Fermi/GBM between 109 and 1010 erg s−1 cm−2 is consistent with the beam flux required in non-LTE radiative transfer models to obtain the excess of Balmer continuum emission observed in this IRIS spectra. Conclusions. The low-energy input by nonthermal electrons above 20 keV is sufficient to produce the enhancement in the Balmer continuum emission. This could be explained by the topology of the reconnection site. The reconnection starts in a tiny bald-patch region, which is transformed dynamically into an X-point current sheet. The size of the interacting region would be below the spatial resolution of the instrument.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3