Effects of radiative losses on the relativistic jets of high-mass microquasars

Author:

Charlet A.,Walder R.,Marcowith A.,Folini D.,Favre J. M.,Dieckmann M. E.

Abstract

Context. Relativistic jets are ubiquitous in astrophysics. High-mass microquasars (HMMQs) are useful laboratories for studying these jets because they are relatively close and evolve over observable timescales. The ambient medium into which the jet propagates, however, is far from homogeneous. Corresponding simulation studies to date consider various forms of a wind-shaped ambient medium, but typically neglect radiative cooling and relativistic effects. Aims. We investigate the dynamical and structural effects of radiative losses and system parameters on relativistic jets in HMMQs, from the jet launch to its propagation over several tens of orbital separations. Methods. We used 3D relativistic hydrodynamical simulations including parameterized radiative cooling derived from relativistic thermal plasma distribution to carry out parameter studies around two fiducial cases inspired by Cygnus X-1 and Cygnus X-3. Results. Radiative losses are found to be more relevant in Cygnus X-3 than Cygnus X-1. Varying jet power, jet temperature, or the wind of the donor star tends to have a larger impact at early times, when the jet forms and instabilities initially develop, than at later times when the jet has reached a turbulent state. Conclusions. Radiative losses may be dynamically and structurally relevant at least for Cygnus X-3 and thus should be examined in more detail.

Funder

GENCI

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3