Speed of sound in dense matter and two families of compact stars

Author:

Traversi Silvia,Char PrasantaORCID,Pagliara Giuseppe,Drago Alessandro

Abstract

The existence of massive compact stars (M ≳ 2.1 M) implies that the speed of sound exceeds the conformal limit (cs2 = 1/3 × the squared speed of light in vacuum) if those stars have an inner and outer crust of ordinary nuclear matter. Here, we show that if the most massive objects are strange quark stars, namely, stars entirely composed of quarks, cs can assume values below the conformal limit even while observational limits on those objects are also satisfied. By using astrophysical data associated with those massive stars derived from electromagnetic and gravitational wave signals, we use a Bayesian analysis framework and by adopting a constant speed of sound equation of state to show that the posterior distribution of cs2 is peaked around 0.3 and the maximum mass of the most probable equation of state is ∼2.13 M. We discuss which new data would require a speed of sound larger than the conformal limit even when considering strange quark stars. In particular, we analyze the possibility that the maximum mass of compact stars is larger than 2.5 M, as it would be if the secondary component of GW190814 would turn out to be a compact star – and not a black hole, as previously assumed. Finally, we discuss how the new data for PSR J0740+6620 obtained by the NICER collaboration compare with our results and find they are in qualitative agreement. We conclude with a brief discussion of other possible interpretations of our analysis.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3