Modeling the CO outflow in DG Tauri B: Swept-up shells versus perturbed MHD disk wind

Author:

de Valon A.,Dougados C.ORCID,Cabrit S.ORCID,Louvet F.ORCID,Zapata L. A.ORCID,Mardones D.ORCID

Abstract

Context. The origin of outflows and their exact impact on disk evolution and planet formation remain crucial open questions. DG Tau B is a Class I protostar associated with a rotating conical CO outflow and a structured disk. Hence it is an ideal target to study these questions. Aims. We aim to characterize the morphology and kinematics of the DG Tau B outflow in order to elucidate its origin and potential impact on the disk. Methods. Our analysis is based on Atacama Large Millimeter Array (ALMA) 12CO(2–1) observations of DG Tau B at 0.15″ (20 au) angular resolution. We developed a tomographic method to recover 2D (R,Z) maps of vertical velocity VZ and specific angular momentum j = R × Vϕ. We created synthetic data cubes for parametric models of wind-driven shells and disk winds, which we fit to the observed channel maps. Results. Tomographic analysis of the bright inner conical outflow shows that both VZ and j remain roughly constant along conical surfaces, defining a shear-like structure. We characterize three different types of substructures in this outflow (arches, fingers, and cusps) with apparent acceleration. Wind-driven shell models with a Hubble law fail to explain these substructures. In contrast, both the morphology and kinematics of the conical flow can be explained by a steady conical magnetohydrodynamic (MHD) disk wind with foot-point radii r0 ≃ 0.7–3.4 au, a small magnetic level arm parameter (λ 1.6), and quasi periodic brightness enhancements. These might be caused by the impact of jet bow shocks, source orbital motion caused by a 25 MJ companion at 50 au, or disk density perturbations accreting through the wind launching region. The large CO wind mass flux (four times the accretion rate onto the central star) can also be explained if the MHD disk wind removes most of the angular momentum required for steady disk accretion. Conclusions. Our results provide the strongest evidence so far for the presence of massive MHD disk winds in Class I sources with residual infall, and they suggest that the initial stages of planet formation take place in a highly dynamic environment.

Funder

Programme National de Physique Stellaire

Programme National de Physique et Chimie du Milieu Interstellaire

Marie Curie Action of the European Union

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference68 articles.

1. Alexander R., Pascucci I., Andrews S., Armitage P., & Cieza L. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T., 475

2. Locating the Launching Region of T Tauri Winds: The Case of DG Tauri

3. Proper Motions of the Jets in the Region of HH 30 and HL/XZ Tau: Evidence for a Binary Exciting Source of the HH 30 Jet

4. Arce H. G., Shepherd D., Gueth F., et al. 2007, in Protostars and Planets V, eds. Reipurth B., Jewitt D., & Keil K., 245

5. MAGNETO-THERMAL DISK WINDS FROM PROTOPLANETARY DISKS

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3