Revisiting the explodability of single massive star progenitors of stripped-envelope supernovae

Author:

Zapartas E.ORCID,Renzo M.ORCID,Fragos T.ORCID,Dotter A.,Andrews J. J.,Bavera S. S.ORCID,Coughlin S.,Misra D.ORCID,Kovlakas K.,Román-Garza J.,Serra J. G.,Qin Y.,Rocha K. A.,Tran N. H.,Xing Z. P.

Abstract

Stripped-envelope supernovae (Types IIb, Ib, and Ic) that show little or no hydrogen comprise roughly one-third of the observed explosions of massive stars. Their origin and the evolution of their progenitors are not yet fully understood. Very massive single stars stripped by their own winds (≳25−30 M at solar metallicity) are considered viable progenitors of these events. However, recent 1D core-collapse simulations show that some massive stars may collapse directly into black holes after a failed explosion, with a weak or no visible transient. In this Letter, we estimate the effect of direct collapse into a black hole on the rates of stripped-envelope supernovae that arise from single stars. For this, we compute single-star MESA models at solar metallicity and map their final state to their core-collapse outcome following prescriptions commonly used in population synthesis. According to our models, no single stars that have lost their entire hydrogen-rich envelope are able to explode, and only a fraction of progenitors left with a thin hydrogen envelope do (IIb progenitor candidates), unless we use a prescription that takes the effect of turbulence into account or invoke increased wind mass-loss rates. This result increases the existing tension between the single-star paradigm to explain most stripped-envelope supernovae and their observed rates and properties. At face value, our results point toward an even higher contribution of binary progenitors to stripped-envelope supernovae. Alternatively, they may suggest inconsistencies in the common practice of mapping different stellar models to core-collapse outcomes and/or higher overall mass loss in massive stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3