The Low-Redshift Lyman Continuum Survey

Author:

Saldana-Lopez AlbertoORCID,Schaerer DanielORCID,Chisholm JohnORCID,Flury Sophia R.ORCID,Jaskot Anne E.ORCID,Worseck GáborORCID,Makan Kirill,Gazagnes SimonORCID,Mauerhofer ValentinORCID,Verhamme Anne,Amorín Ricardo O.ORCID,Ferguson Harry C.ORCID,Giavalisco Mauro,Grazian AndreaORCID,Hayes Matthew J.,Heckman Timothy M.,Henry AlainaORCID,Ji ZhiyuanORCID,Marques-Chaves Rui,McCandliss Stephan R.ORCID,Oey M. SallyORCID,Östlin GöranORCID,Pentericci LauraORCID,Thuan Trinh X.ORCID,Trebitsch MaximeORCID,Vanzella ErosORCID,Xu XinfengORCID

Abstract

Aims. Combining 66 ultraviolet (UV) spectra and ancillary data from the recent Low-Redshift Lyman Continuum Survey (LzLCS) and 23 LyC observations by earlier studies, we form a statistical sample of star-forming galaxies at z ∼ 0.2 − 0.4 with which we study the role of cold interstellar medium (ISM) gas in the leakage of ionizing radiation. We also aim to establish empirical relations between the H I neutral and low-ionization state (LIS) absorption lines with different galaxy properties. Methods. We first constrain the massive star content (stellar ages and metallicities) and UV attenuation by fitting the stellar continuum with a combination of simple stellar population models. The models, together with accurate LyC flux measurements, allow us to determine the absolute LyC photon escape fraction for each galaxy (fescabs). We then measure the equivalent widths and residual fluxes of multiple H I and LIS lines, and the geometrical covering fraction of the UV emission, adopting the picket-fence model. Results. The LyC escape fraction spans a wide range, with a median fescabs (0.16, 0.84 quantiles) of 0.04 (0.02, 0.20), and 50 out of the 89 galaxies detected in the LyC (1σ upper limits of fescabs ≲ 0.01 for non-detections, typically). The H I and LIS line equivalent widths scale with the UV luminosity and attenuation, and inversely with the residual flux of these lines. Additionally, Lyα equivalent widths scale with both the H I and LIS residual fluxes, but anti-correlate with the corresponding H I or LIS equivalent widths. The H I and LIS residual fluxes are correlated, indicating that the neutral gas is spatially traced by the low-ionization transitions. We find that the observed trends of the absorption lines and the UV attenuation are primarily driven by the geometric covering fraction of the gas. The observed nonuniform gas coverage also demonstrates that LyC photons escape through low-column-density channels in the ISM. The equivalent widths and residual fluxes of both the H I and LIS lines strongly correlate with fescabs: strong LyC leakers (highest fescabs) show weak absorption lines, low UV attenuation, and large Lyα equivalent widths. We provide several empirical calibrations to estimate fescabs from UV absorption lines. Finally, we show that simultaneous UV absorption line and dust attenuation measurements can, in general, predict the escape fraction of galaxies. We apply our method to available measurements of UV LIS lines of 15 star-forming galaxies at z ∼ 4 − 6 (plus 3 high-z galaxy composites), finding that these high-redshift, UV-bright galaxies (MUV ≲ −21) may have low escape fractions, fescabs ≲ 0.1. Conclusions. UV absorption lines trace the cold ISM gas of galaxies, which governs the physics of the LyC escape. We show that, with some assumptions, the absolute LyC escape can be statistically predicted using UV absorption lines, and the method can be applied to study galaxies across a wide redshift range, including in the epoch of cosmic reionization.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3